محاسبات نرم

محاسبات نرم

۲ مطلب با کلمه‌ی کلیدی «مشبکه» ثبت شده است

مشبکه کراندار Bounded Lattice

ساختار جبریرا مشبکه ای کراندار گوییم هرگاهیک مشبکه باشد و عضوهای 0 و 1 در L در شرایط زیر صدق کنند:

                                             

                                             

0 را کران پایین و 1 را کران بالای L می نامیم.


مثال: مشبکه زیر، مشبکه ای کراندار است. کران پایین و بالای آن را مشخص کنید.

                                                

  • تکراری

مشبکه Lattice

۱۶
مهر

مشبکه Lattice


مجموعه ی مرتب جزئی L همراه با عمل دوتایی    را یک مشبکه (Lattice) گوییم هرگاه برای هر دو عضو x و y از L، بزرگترین کران پایین {x,y} و کوچکترین کران بالای {x,y} موجود باشد.

یعنی:

به عبارتی می‌توان گفت، L یک مشبکه است هرگاه یک رسند-نیم مشبکه و یک وست-نیم مشبکه باشد.


می توان مشبکه را به صورت جبری نیز تعریف کرد.

جبر (L; ∨,∧) را یک مشبکه نامیم هرگاه در شرایط زیر صدق کند:

1)     خودتوانی:

جا به جایی:

شرکت پذیری:

1)     جذب:



مثال: مجموعه ی توانی همراه با عمل اشتراک و اجتماع یک مشبکه است.

زیرا به وضوح خواص خودتوانی، جا به جایی، شرکت پذیری و خاصیت جذب برای اجتماع و اشتراک مجموعه ها برقرار است.


برای درک بهتر، فرض کنیم مجموعه X برابر باشد با:

بنابراین:


نمودار هاسه این مشبکه به شکل زیر است:


  • تکراری